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Abstract

In this preliminary investigation we demonstrate on-the-fly com-
putation of unresolved resonance region cross sections. The on-the-fly
method is implemented and tested in the OpenMC Monte Carlo neu-
tron transport code. Preliminary results indicate that, in simulations
of a system that is known to be highly sensitive to the e↵ects of res-
onance structure in unresolved region cross sections, the on-the-fly
treatment produces results that are in excellent agreement with those
produced with the well-established probability table method. Addi-
tionally, we use the on-the-fly approach to show that accounting for
the resonance structure of the competitive inelastic scattering reaction
cross section can have non-negligible e↵ects for an intermediate spec-
trum system. Comparisons between di↵erential reaction rates and k

e↵

eigenvalues obtained using infinite-dilute, probability table, and on-
the-fly cross sections in simulations of the Big Ten critical assembly
are presented in this initial study.
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1 Introduction

In this section we give brief introductions to important physical phenomena
that characterize the unresolved resonance energy region and the computa-
tional methods that have typically been employed for capturing the e↵ects of
those phenomena in Monte Carlo simulations. Section 1.1 highlights defining
characteristics of the unresolved resonance region as applicable to neutron
transport simulations. In Section 1.2 we describe the use of so-called infinite-
dilute cross sections in the unresolved resonance region and the pitfalls of this
approach. The probability table method for treating resonance cross section
structure in the unresolved region is outlined in Section 1.3. In Section 2 we
explain the on-the-fly method of generating cross sections in the unresolved
resonance region. Initial results obtained with the on-the-fly method are pre-
sented in Section 3 along with results obtained with the infinite-dilute and
probability table methods. Preliminary conclusions reached in this initial
study and areas for future research are discussed in Section 4.

1.1 Unresolved Resonance Region

At su�ciently high incident neutron energies, on average, individual res-
onances become broader, exhibit lower peak values, and are spaced close
enough together that they overlap significantly with one another. In this
region, the localized structure of a single resonance is insignificant relative to
the collective structure of several resonances spanning a wider energy range.
The energies that are characterized by this sort of cross section behavior
comprise the fast energy region [5]. The fast energy region boundaries for
di↵erent nuclides will vary with the onset coming at lower energies for heavier
nuclides than for lighter ones. At somewhat lower incident neutron energies,
the resonances for a given nuclide will be narrower, more pronounced, and
better separated from neighboring resonances. These properties make in-
dividual resonances more easily distinguishable from one another in cross
section measurement experiments. That is, the resonances can be resolved
experimentally. Unlike in the fast energy region, there is sharp structure as-
sociated with individual resonances at these energies and this structure must
be carefully accounted for in neutron transport simulations. Energies char-
acterized by this type of behavior make up the resolved resonance region [5].
The intermediate incident neutron energies between the resolved resonance
and fast energy regions make up the unresolved resonance region (URR). In
the URR, individual resonances cannot all be resolved experimentally even
though, in physical reality, each resonance exhibits distinct structure, just as
in the resolved resonance region. As a result, precise cross section values are
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unknown in the URR. Instead of precise descriptions of URR resonances and
cross sections, we must rely on average descriptions and statistical distribu-
tions [5].

1.2 Infinite-Dilute Cross Sections

A precisely known cross section value for reaction x can be written as a
Lebesgue integral in terms of a Dirac �-function in �0

x

-space such that

�
x
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n

) =
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�1
d�0

x

�(�0
x
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))�0
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This is, though, just a special instance of a more general case in which we
cannot collapse the distribution of �0

x

values to a precise value with a �-
function. However, we can write an expression for the expected cross section
value,
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which is commonly referred to as an infinite-dilute cross section, �1
x

(E
n

).
This is the situation we are faced with when dealing with URR cross sec-
tions. We do not know precise values, but, based on mean unresolved reso-
nance parameter values and the statistical distributions of those values, we
can reconstruct the distribution, P (�0

x

|E
n

), of cross section values at a given
neutron energy. Knowing this distribution then allows us to compute the ex-
pected, infinite-dilute values. Historically, in the absence of precisely known
URR resonance structure, these infinite-dilute cross sections were used in
Monte Carlo neutron transport simulations.

Use of the infinite-dilute cross sections, though, is tantamount to ne-
glecting energy self-shielding e↵ects. By obtaining expected cross section
values in the manner just described, we have smoothed out the resonance
structure of the URR. That is, in the narrow energy intervals where res-
onances actually occur, we have a reduced value, and in the wider energy
intervals between real URR resonances, we have an increased value. So, over
the majority of URR energies, infinite-dilute cross sections are greater than
the unknown, precise values. It is known that this phenomenon leads to
significant over-predictions of capture by resonant absorbers (e.g. 238U) in
intermediate energy spectrum systems when infinite-dilute cross sections are
used in simulations. This results in under-predicted, non-conservative k

e↵

eigenvalue calculations [12].
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1.3 Probability Tables

In order to more faithfully account for resonance structure and the resulting
self-shielding e↵ects in the URR - phenomena that can be worth hundreds
of pcm in intermediate spectrum systems - the probability table method
was proposed [8]. This method relies on the sampling of discrete cross sec-
tion values with associated discrete probabilities such that, in the limit of
many samples, the expected cross section value at a given E

n

is preserved.
Although expected cross sections are preserved, the distribution of discrete
cross section-probability pairs provides a more realistic model for URR self-
shielding e↵ects. Certain practical considerations in implementing the prob-
ability table method are well-documented [15][4][9].

2 On-the-Fly Cross Section Generation

In this section we describe the on-the-fly method of generating URR cross
sections, as implemented in OpenMC. The sampling of unresolved resonance
parameters and use of the sampled parameters in cross section computations
using the single-level Breit-Wigner formulae are discussed in Sections 2.1
and 2.2, respectively. Where possible, we use variables that are consistent in
notation with those in the ENDF-6 Formats Manual [18].

2.1 Level Spacings and Partial Widths

In the energy region about any incident neutron laboratory system energy,
E

n

, at which we wish to compute a realization of URR cross section values,
we must statistically generate an ensemble of resonances. This ensemble,
sometimes referred to as a resonance ladder, is determined by the energies at
which resonances occur as well as the partial reaction widths characterizing
each of the resonances. The process for sampling these values proceeds di-
rectly from the unresolved resonance parameters given in File 2 of an ENDF-6
file.

We are first concerned with the energy-dependent mean unresolved reso-
nance parameter values given for an individual spin sequence which is defined
by an orbital angular momentum quantum number, l, and a total angular
momentum quantum number, J

j

. There are NLS orbital quantum numbers
associated with the URR for a given nuclide. For each of these NLS values,
there are NJS

l

total angular momentum quantum numbers. That is, NLS
is a nuclide-dependent quantity and NJS

l

is dependent on both the nuclide
and the l values for that nuclide.
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For each l�J
j

spin sequence, we sample level spacings (i.e. energy di↵er-
ences between adjacent resonance energies) and partial reaction widths using
those parameters’ mean values and their statistical distributions. The mean
parameter values at a specific E

n

are determined by interpolation between
the values at the energies tabulated in the ENDF-6 File 21. The spread
of level spacing and partial reaction width values can be described by the
Wigner distribution and �2 distributions with varying degrees of freedom,
respectively. Table 1 gives level spacing and partial width variable notation
and Table 2 gives the notation that will be used for the degrees of freedom
for each of the partial width �2 distributions.

The Wigner distribution for level spacings is given by
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Direct sampling of this distribution gives
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for a random number on the unit interval, ⇠.
Partial widths for reaction ⇤, G⇤, are obtained by sampling a �2 distri-

bution with the appropriate variables for the number of degrees of freedom,
AMU⇤, as given in Table 2. Therefore, we sample
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and then calculate the sampled widths as

GN
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p
E

�
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l,Jj(En
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l,Jj(En
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1The nuclide-dependent interpolation scheme is prescribed in the ENDF-6 file.
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and

GX
l,Jj =

hGX
l,Jj(En

)i
AMUX

l,Jj

GX
l,Jj

hGX
l,Jj(En

)i . (9)

The �
�
AMU

⇤

2

�
term in Eq. 5 is the mathematical Gamma function. The de-

rived variables ⇢ and ⌫ are given by ak(E
�

) and P
l

/⇢, respectively. In these
expressions, a, k(E

�

), and P
l

are the channel radius, center-of-mass neu-
tron wavenumber at a resonance energy, E

�

, and orbital quantum number-
dependent penetration factor, respectively. The wavenumber is given by

k(E) =
10
p
2m

n

~c
AWR

AWR + 1

p
E. (10)

with m
n

, ~c, and AWR being the mass of a neutron in eV, the reduced
Planck constant multiplied by the speed of light in eV-fm, and the ratio
of the mass of the target nuclide to that of a neutron, respectively. The
channel radius is related to the scattering radius, AP , which is to be treated
as energy-dependent, or not, if the NRO ENDF flag is 1 or 0, respectively.
For a scattering radius that is independent of energy, a NAPS ENDF flag
set to 0 indicates that the channel radius should be calculated as

a = 0.123⇥ AWR1/3 + 0.08. (11)

In this case, a should be used in the computation of penetrabilities, P
l

, and
shift factors, S

l

, whereas AP should be used to calculate hard sphere phase
shifts, �

l

. If the NAPS flag is set to 1, AP should be used in determining
the penetrabilities, shift factors, and phase shifts.

For a scattering radius that is dependent on energy, as in the energy-
independent case, NAPS set to 0 indicates that a is to be computed with
Eq. 11 and used in the penetrabilities and shift factors with AP being used
in the hard sphere phase shifts. If NAPS is set to 1 or 2, the penetrabilities,
shift factors, and phase shifts are all calculated using AP . However, in the
case that NAPS is set to 2, an energy-independent AP is given and should
be used for P

l

and S
l

. Expressions for P
l

and S
l

are given in the next section.

2.2 Single-Level Breit-Wigner Cross Sections

Cross section values at a given E
n

are computed using a so-called “many-level
Breit-Wigner” model2 [6]. In this model, the cross section values at E

n

are

2This many-level Breit-Wigner model should not be confused with the multi-level Breit-
Wigner (MLBW) resonance formalism.
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Variable Symbol

Mean Level Spacing hD
l,Jj(En

)i
Sampled Level Spacing D

l,Jj

Mean Reduced Neutron Width hGN0
l,Jj(En

)i
Sampled Neutron Width GN

l,Jj

Mean Radiative Capture Width hGG
l,Jj(En

)i
Sampled Radiative Capture Width GG

l,Jj

Mean Fission Width hGF
l,Jj(En

)i
Sampled Fission Width GF

l,Jj

Mean Competitive Reaction Width hGX
l,Jj(En

)i
Sampled Competitive Reaction Width GX

l,Jj

Table 1: Unresolved Resonance Parameter Variables

Variable Symbol

Neutron Width DOF AMUN
l,Jj

Radiative Capture Width DOF AMUG
l,Jj

Fission Width DOF AMUF
l,Jj

Competitive Reaction Width DOF AMUX
l,Jj

Table 2: Partial Width �2 Distribution Variables
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computed as a summation of the contributions from each of N
res

resonances
at this energy. The value of N

res

must be chosen to be high enough that the
addition of a nominal resonance’s contribution to the cross section values at
E

n

is negligible.
The SLBW elastic neutron scattering cross section is given by
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The potential, or shape elastic, scattering cross section appears in the above
expression and is calculated as
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Radiative capture, fission, and competitive inelastic scattering cross sections
are given by
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respectively. The total cross section is calculated as the sum of the partials,

�
tot
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) = �
n
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) + �
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) + �
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Other variables needed for the computation of cross sections include the
resonance peak value,

�
�
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Jj

4⇡

k(E
�

)2
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l,Jj

GT
l,Jj

, (18)

the statistical spin factor,

g
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2J
j
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4SPI + 2
, (19)
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the energy-dependent neutron width,

�
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with T being the temperature of the material in which the target nuclide
resides,

x =
2(E

n

� E 0
�

)

�
�

, (22)

and the shifted resonance energy,

E 0
�
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�
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n

))

2P
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The penetrabilities, hard sphere phase shifts, and resonance energy shift
factors are given by

P
l
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8
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respectively.
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Continuous-energy Doppler broadening - as opposed to the point-wise
kernel broadening of the SIGMA1 method [3] - is accomplished using the  
and � Doppler integral functions [1]. These functions are given by

 (✓, x) =
✓
p
⇡

2
Re


W

✓
✓x

2
,
✓

2

◆�
(27)

and

�(✓, x) =
✓
p
⇡

2
Im


W

✓
✓x

2
,
✓

2

◆�
, (28)

respectively. The W -function, also known as the Faddeeva function, is de-
fined as

W (↵, �) = exp
�
�z2

�
erfc (�iz) =

i

⇡

Z 1

�1
dt
exp (�t2)

z � t
(29)

with ↵ and � being the real and imaginary components, respectively, of
complex number z = ↵ + i�.

3 Initial Results

In this section we present results obtained from OpenMC simulations of the
Big Ten critical assembly [7]. The particular model of the system is taken
from the International Criticality Safety Benchmark Evaluation Project (ICS-
BEP) collection [13]. In Section 3.1 we present e↵ective multiplication factor,
k
e↵

, eigenvalue results and in Section 3.2 we examine di↵erential absorption
rates. Multiple URR cross section treatments are considered.

All simulations are performed using the ENDF70 neutron data library
[16]. This library contains ENDF/B-VII.0 nuclear data [2] processed into
ACE format with the NJOY Nuclear Data Processing System [10].

3.1 ke↵ Eigenvalues and Integral Absorption Rates

Tables 3 and 4 give the e↵ective multiplication factors and integral URR
238U absorption rates, respectively, for di↵erent unresolved region cross sec-
tion treatments. We see that accounting for the resonance structure of 238U
cross sections, with either probability tables or on-the-fly calculations, results
in a ⇠ 400 pcm increase in k

e↵

relative to the case in which infinite-dilute
cross sections are utilized. Modeling the resonance structure of the first level
inelastic scattering reaction cross section contributes another ⇠ 40 pcm in-
crease. Corresponding e↵ects are seen in URR absorption rates.
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238U XS Other Nuclides Inelastic XS k
e↵

1�
mean

Infinite-Dilute Infinite-Dilute Infinite-Dilute 1.00098 0.00010
Prob. Tables Prob. Tables Infinite-Dilute 1.00490 0.00009

OTF Prob. Tables Infinite-Dilute 1.00485 0.00010
OTF Prob. Tables Self-Shielded 1.00528 0.00009

Table 3: Comparison of k
e↵

for Various URR Treatments

238U XS Other Nuclides Inelastic XS Abs. Rate 1�
mean

Infinite-Dilute Infinite-Dilute Infinite-Dilute 0.23014 0.00007
Prob. Tables Prob. Tables Infinite-Dilute 0.22329 0.00007

OTF Prob. Tables Infinite-Dilute 0.22340 0.00006
OTF Prob. Tables Self-Shielded 0.22548 0.00006

Table 4: 238U URR Absorption Rates for Various URR Treatments

3.2 Di↵erential Absorption Rates

Figures 1a and 1b show the 238U absorption rates over the entire energy
spectrum and in the URR, respectively, for both probability table and on-
the-fly cross section treatments. Very good agreement is observed between
the di↵erential results produced with the two methods. For a consistent
comparison, here, infinite-dilute inelastic scattering cross sections are used
in both cases.
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Figure 1: Absorption with Probability Tables and OTF Computations
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3.3 Self-Shielded Inelastic Scattering Cross Sections

The ENDF-6 format prescribes the use of the ENDF File 3 infinite-dilute
cross section values for the competitive inelastic scattering reaction in the
URR [18]. In Table 3, we see a ⇠ 40 pcm increase in k

e↵

when the res-
onance structure of the 238U first level inelastic scattering cross section is
accounted for relative to the case in which the infinite-dilute values are used.
Using the commonly employed 95% confidence interval as an acceptance cri-
terion, this di↵erence lies outside of statistical uncertainties. The possibility
of di↵erent treatments of the competitive inelastic scattering cross section
inducing di↵erences in simulation results is mentioned by MacFarlane, et.
al [11]. In their code-to-code comparison study of Big Ten critical assem-
bly simulation results, it is noted that the TRIPOLI code [17], in making
use of URR cross section data generated with the CALENDF data process-
ing code [14], accounts for the resonance structure of the inelastic scattering
cross section. Many other transport codes, such as MCNP [19], utilize the
infinite-dilute URR cross section values that are produced by the NJOY pro-
cessing code. Here, in OpenMC, we have isolated inelastic scattering cross
section resonance structure e↵ects by allowing for the on-the-fly use of either
infinite-dilute or shielded values.
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Figure 2: Inelastic Scattering Cross Section Absorption Rate E↵ects
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Figure 3: URR Inelastic Scattering Cross Section Absorption Rate E↵ects

4 Conclusions and Future Work

The work presented in this initial report demonstrates a procedure for com-
puting URR cross sections on-the-fly in Monte Carlo neutron transport codes.
Excellent agreement is observed in comparisons of integral and di↵erential
absorption rates, as well k

e↵

eigenvalues, that are calculated using the on-
the-fly method with those obtained using probability tables. This agreement
is achieved in simulations of the Big Ten critical assembly which is an inter-
mediate spectrum system that is highly sensitive to URR resonance e↵ects.

Computation of URR cross sections on-the-fly in the course of a simu-
lation can be computationally expensive with respect to runtime. Quantifi-
cation of these costs is necessary in order to establish the method’s practi-
cal viability. Because on-the-fly computations rely on unresolved resonance
parameters rather than probability tables of arbitrary size, memory reduc-
tion is typically achieved with the method. These reductions should also be
quantified. The on-the-fly method is only applied to 238U in these studies.
Extending the application of the method to other nuclides should be inves-
tigated. The impact of an extended application on both calculated results
and computational e�ciency will be of interest in these investigations.
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